commit 41bb2b3c5523f33a9119b2493171358c19ac3449
Author: sin <sin@2f30.org>
Date: Fri, 1 Mar 2013 11:42:09 +0000
Initial commit
Diffstat:
A | LICENSE | | | 13 | +++++++++++++ |
A | Makefile | | | 37 | +++++++++++++++++++++++++++++++++++++ |
A | data.h | | | 134 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | md5.c | | | 247 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | md5.h | | | 35 | +++++++++++++++++++++++++++++++++++ |
A | mem.c | | | 351 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | memzap.c | | | 142 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | queue.h | | | 574 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | test.c | | | 16 | ++++++++++++++++ |
A | tree.h | | | 765 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
A | utils.c | | | 25 | +++++++++++++++++++++++++ |
11 files changed, 2339 insertions(+), 0 deletions(-)
diff --git a/LICENSE b/LICENSE
@@ -0,0 +1,13 @@
+Copyright (c) sin <sin@2f30.org>
+
+Permission to use, copy, modify, and/or distribute this software for any
+purpose with or without fee is hereby granted, provided that the above
+copyright notice and this permission notice appear in all copies.
+
+THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
diff --git a/Makefile b/Makefile
@@ -0,0 +1,37 @@
+BIN = memzap
+VER = 0.1
+SRC = memzap.c mem.c utils.c md5.c
+OBJ = ${SRC:.c=.o}
+
+PREFIX = /usr
+MANDIR = /man/man1
+MANDST = ${PREFIX}${MANDIR}
+
+CC = gcc
+
+# These might need updating, depending on your system
+INCS = -I/usr/local/include
+LIBS = -L/usr/local/lib
+
+CFLAGS += -g -O3 -Wall -Wextra -Wunused -DVERSION=\"${VER}\" ${INCS}
+LDFLAGS +=
+
+$(BIN): ${OBJ}
+ ${CC} ${CFLAGS} ${LDFLAGS} -o $@ ${OBJ}
+
+%.o: %.c
+ ${CC} ${CFLAGS} -c -o $@ $<
+
+clean:
+ rm -rf ${BIN} ${OBJ}
+
+all: memzap
+
+install:
+ cp -f ${BIN} ${PREFIX}/bin
+ chmod 755 ${PREFIX}/bin/${BIN}
+
+uninstall:
+ rm -f ${PREFIX}/bin/${BIN}
+
+.PHONY: all clean install uninstall
diff --git a/data.h b/data.h
@@ -0,0 +1,134 @@
+/* See LICENSE file for copyright and license details. */
+
+#ifndef _DATA_H
+#define _DATA_H
+
+#include <errno.h>
+#include <unistd.h>
+#include <sys/stat.h>
+#include <sys/ptrace.h>
+#include <sys/wait.h>
+#include <sys/mman.h>
+#include <fcntl.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdint.h>
+#include <stdbool.h>
+#include <limits.h>
+#include <signal.h>
+#include <err.h>
+
+#include "queue.h"
+#include "tree.h"
+#include "md5.h"
+
+#define min(a, b) ((a) < (b) ? (a) : (b))
+
+enum {
+ /* The preferred block size */
+ BLKSIZE = 16384
+};
+
+struct mem_blk {
+ /* Points to the actual data for this
+ * block. The user should never free pointers
+ * passed to this API unless the corresponding
+ * memory region has been freed. */
+ void *buf;
+ /* Simple rolling sum of this block */
+ uint32_t weak_sum;
+ /* The MD5 digest */
+ unsigned char digest[MD5_DIGEST_LENGTH];
+ /* Offset into the memory region of this block */
+ off_t offset;
+ /* Size of this block, typically `BLKSIZE'
+ * or less for the last block */
+ size_t len;
+};
+
+struct mem_region {
+ /* Size of the memory region */
+ size_t rsize;
+ /* Number of blocks in this region */
+ size_t nblocks;
+ /* rsize % nblocks */
+ size_t rem;
+ /* The block size used for this region */
+ size_t blksize;
+ /* There are `nblocks' mem_blk entries
+ * here, describing the entire memory region */
+ struct mem_blk *mblks;
+};
+
+struct mem_diff {
+ /* Our updated data */
+ void *buf;
+ /* Offset into the memory region where
+ * this buffer should be written */
+ off_t offset;
+ /* Actual size of the buffer */
+ size_t len;
+ /* Index into the memory region where
+ * the corresponding memory block is located */
+ int index;
+};
+
+struct mem_region_diff {
+ /* The diffs for this memory region */
+ struct mem_diff *mrdiffs;
+ /* The number of diffs */
+ size_t nmrdiffs;
+};
+
+struct mem_tree_entry {
+ /* The rolling sum for this rbnode, we sort
+ * based on this property */
+ uint32_t weak_sum;
+ /* Pointers to memory blocks, normally there
+ * will be only 1 memory block here, however,
+ * if we have weak sum collisions, then we will
+ * chain more entries here */
+ struct mem_blk **mblks;
+ /* Actual number of tracked memory blocks */
+ size_t nmblks;
+ /* The memory region this tree is generated
+ * from */
+ struct mem_region *mr;
+ RB_ENTRY(mem_tree_entry) entry;
+};
+RB_HEAD(mem_tree, mem_tree_entry);
+
+/* Return the number of blocks in a buffer of `len' bytes */
+static inline size_t
+num_blocks(size_t len)
+{
+ return (len + (BLKSIZE - 1)) / BLKSIZE;
+}
+
+/* utils.c */
+void *xmalloc(size_t len);
+void *xrealloc(void *ptr, size_t len);
+
+/* mem.c */
+uint32_t weak_sum(const void *buf, size_t len);
+void strong_sum(const void *buf, size_t len, void *digest);
+void dump_mem_blk(struct mem_blk *mb);
+struct mem_region *build_mem_region(unsigned char *buf, size_t len);
+void dump_mem_region(struct mem_region *mr);
+void free_mem_region(struct mem_region *mr);
+int mem_cmp(struct mem_tree_entry *a, struct mem_tree_entry *b);
+RB_PROTOTYPE(mem_tree, mem_tree_entry, entry,
+ mem_cmp);
+struct mem_tree *build_mem_tree(struct mem_region *mr);
+void dump_mem_tree(struct mem_tree *mt);
+void free_mem_tree(struct mem_tree *mt);
+struct mem_region_diff *diff_mem_region(struct mem_tree *dst,
+ struct mem_region *src);
+struct mem_region *apply_diff(struct mem_region *dst,
+ struct mem_region_diff *rdiff);
+void dump_mem_region_diff(struct mem_region_diff *rdiff);
+void free_mem_region_diff(struct mem_region_diff *rdiff);
+
+#endif
diff --git a/md5.c b/md5.c
@@ -0,0 +1,247 @@
+/* $OpenBSD: md5.c,v 1.2 2011/01/11 15:42:05 deraadt Exp $ */
+
+/*
+ * This code implements the MD5 message-digest algorithm.
+ * The algorithm is due to Ron Rivest. This code was
+ * written by Colin Plumb in 1993, no copyright is claimed.
+ * This code is in the public domain; do with it what you wish.
+ *
+ * Equivalent code is available from RSA Data Security, Inc.
+ * This code has been tested against that, and is equivalent,
+ * except that you don't need to include two pages of legalese
+ * with every copy.
+ *
+ * To compute the message digest of a chunk of bytes, declare an
+ * MD5Context structure, pass it to MD5Init, call MD5Update as
+ * needed on buffers full of bytes, and then call MD5Final, which
+ * will fill a supplied 16-byte array with the digest.
+ */
+
+#include <stdio.h>
+#include <strings.h>
+#include <stdint.h>
+
+#include "md5.h"
+
+#define PUT_64BIT_LE(cp, value) do { \
+ (cp)[7] = (value) >> 56; \
+ (cp)[6] = (value) >> 48; \
+ (cp)[5] = (value) >> 40; \
+ (cp)[4] = (value) >> 32; \
+ (cp)[3] = (value) >> 24; \
+ (cp)[2] = (value) >> 16; \
+ (cp)[1] = (value) >> 8; \
+ (cp)[0] = (value); } while (0)
+
+#define PUT_32BIT_LE(cp, value) do { \
+ (cp)[3] = (value) >> 24; \
+ (cp)[2] = (value) >> 16; \
+ (cp)[1] = (value) >> 8; \
+ (cp)[0] = (value); } while (0)
+
+static uint8_t PADDING[MD5_BLOCK_LENGTH] = {
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*
+ * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
+ * initialization constants.
+ */
+void
+MD5Init(MD5_CTX *ctx)
+{
+ ctx->count = 0;
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xefcdab89;
+ ctx->state[2] = 0x98badcfe;
+ ctx->state[3] = 0x10325476;
+}
+
+/*
+ * Update context to reflect the concatenation of another buffer full
+ * of bytes.
+ */
+void
+MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
+{
+ size_t have, need;
+
+ /* Check how many bytes we already have and how many more we need. */
+ have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
+ need = MD5_BLOCK_LENGTH - have;
+
+ /* Update bitcount */
+ ctx->count += (uint64_t)len << 3;
+
+ if (len >= need) {
+ if (have != 0) {
+ bcopy(input, ctx->buffer + have, need);
+ MD5Transform(ctx->state, ctx->buffer);
+ input += need;
+ len -= need;
+ have = 0;
+ }
+
+ /* Process data in MD5_BLOCK_LENGTH-byte chunks. */
+ while (len >= MD5_BLOCK_LENGTH) {
+ MD5Transform(ctx->state, input);
+ input += MD5_BLOCK_LENGTH;
+ len -= MD5_BLOCK_LENGTH;
+ }
+ }
+
+ /* Handle any remaining bytes of data. */
+ if (len != 0)
+ bcopy(input, ctx->buffer + have, len);
+}
+
+/* explicit_bzero - don't let the compiler optimize away bzero */
+static void
+explicit_bzero(void *p, size_t n)
+{
+ bzero(p, n);
+}
+
+/*
+ * Final wrapup - pad to 64-byte boundary with the bit pattern
+ * 1 0* (64-bit count of bits processed, MSB-first)
+ */
+void
+MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
+{
+ uint8_t count[8];
+ size_t padlen;
+ int i;
+
+ /* Convert count to 8 bytes in little endian order. */
+ PUT_64BIT_LE(count, ctx->count);
+
+ /* Pad out to 56 mod 64. */
+ padlen = MD5_BLOCK_LENGTH -
+ ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
+ if (padlen < 1 + 8)
+ padlen += MD5_BLOCK_LENGTH;
+ MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
+ MD5Update(ctx, count, 8);
+
+ if (digest != NULL) {
+ for (i = 0; i < 4; i++)
+ PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
+ }
+ explicit_bzero(ctx, sizeof(*ctx)); /* in case it's sensitive */
+}
+
+/* The four core functions - F1 is optimized somewhat */
+
+/* #define F1(x, y, z) (x & y | ~x & z) */
+#define F1(x, y, z) (z ^ (x & (y ^ z)))
+#define F2(x, y, z) F1(z, x, y)
+#define F3(x, y, z) (x ^ y ^ z)
+#define F4(x, y, z) (y ^ (x | ~z))
+
+/* This is the central step in the MD5 algorithm. */
+#define MD5STEP(f, w, x, y, z, data, s) \
+ ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
+
+/*
+ * The core of the MD5 algorithm, this alters an existing MD5 hash to
+ * reflect the addition of 16 longwords of new data. MD5Update blocks
+ * the data and converts bytes into longwords for this routine.
+ */
+void
+MD5Transform(uint32_t state[4], const uint8_t block[MD5_BLOCK_LENGTH])
+{
+ uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ bcopy(block, in, sizeof(in));
+#else
+ for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
+ in[a] = (uint32_t)(
+ (uint32_t)(block[a * 4 + 0]) |
+ (uint32_t)(block[a * 4 + 1]) << 8 |
+ (uint32_t)(block[a * 4 + 2]) << 16 |
+ (uint32_t)(block[a * 4 + 3]) << 24);
+ }
+#endif
+
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+
+ MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
+ MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
+ MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
+ MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
+ MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
+ MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
+ MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
+ MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
+ MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
+ MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
+ MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
+ MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
+ MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
+ MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
+ MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
+ MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
+
+ MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
+ MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
+ MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
+ MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
+ MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
+ MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
+ MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
+ MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
+ MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
+ MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
+ MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
+ MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
+ MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
+ MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
+ MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
+ MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
+
+ MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
+ MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
+ MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
+ MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
+ MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
+ MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
+ MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
+ MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
+ MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
+ MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
+ MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
+ MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
+ MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
+ MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
+ MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
+ MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
+
+ MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
+ MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
+ MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
+ MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
+ MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
+ MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
+ MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
+ MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
+ MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
+ MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
+ MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
+ MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
+ MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
+ MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
+ MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
+ MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
+
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+}
diff --git a/md5.h b/md5.h
@@ -0,0 +1,35 @@
+/* $OpenBSD: md5.h,v 1.2 2012/12/05 23:20:15 deraadt Exp $ */
+
+/*
+ * This code implements the MD5 message-digest algorithm.
+ * The algorithm is due to Ron Rivest. This code was
+ * written by Colin Plumb in 1993, no copyright is claimed.
+ * This code is in the public domain; do with it what you wish.
+ *
+ * Equivalent code is available from RSA Data Security, Inc.
+ * This code has been tested against that, and is equivalent,
+ * except that you don't need to include two pages of legalese
+ * with every copy.
+ */
+
+#ifndef _MD5_H
+#define _MD5_H
+
+#define MD5_BLOCK_LENGTH 64
+#define MD5_DIGEST_LENGTH 16
+
+typedef struct MD5Context {
+ /* state */
+ uint32_t state[4];
+ /* number of bits, mod 2^64 */
+ uint64_t count;
+ /* input buffer */
+ uint8_t buffer[MD5_BLOCK_LENGTH];
+} MD5_CTX;
+
+void MD5Init(MD5_CTX *);
+void MD5Update(MD5_CTX *, const uint8_t *, size_t);
+void MD5Final(uint8_t [MD5_DIGEST_LENGTH], MD5_CTX *);
+void MD5Transform(uint32_t [4], const uint8_t [MD5_BLOCK_LENGTH]);
+
+#endif
diff --git a/mem.c b/mem.c
@@ -0,0 +1,351 @@
+/* See LICENSE file for copyright and license details. */
+
+#include "data.h"
+
+/* Increase this for more verbose output */
+static int verbose = 0;
+
+/* This is a simple rolling sum taken from
+ * the core rsync algorithm */
+uint32_t
+weak_sum(const void *buf, size_t len)
+{
+ size_t i;
+ uint32_t s1, s2;
+ const unsigned char *p = buf;
+
+ s1 = s2 = 0;
+ for (i = 0; i < len; i++) {
+ s1 += p[i];
+ s2 += s1;
+ }
+ return (s1 & 0xffff) + (s2 << 16);
+}
+
+void
+strong_sum(const void *buf, size_t len, void *digest)
+{
+ MD5_CTX md5_ctx;
+ const uint8_t *p = (const uint8_t *)buf;
+
+ MD5Init(&md5_ctx);
+ MD5Update(&md5_ctx, p, len);
+ MD5Final(digest, &md5_ctx);
+}
+
+void
+dump_mem_blk(struct mem_blk *mb)
+{
+ int i;
+
+ if (!mb)
+ return;
+
+ printf("weak sum: %08x\n", mb->weak_sum);
+ printf("MD5 hash: ");
+ for (i = 0; i < MD5_DIGEST_LENGTH; i++)
+ printf("%02x", mb->digest[i]);
+ putchar('\n');
+ printf("offset: %jd\n", (intmax_t)mb->offset);
+ printf("len: %zu\n", mb->len);
+
+}
+
+/* Given a buffer, build a region that describes it.
+ * NOTE: The passed in `buf' is bound to this memory
+ * region and *cannot* be freed until after the call
+ * to free_memory_region(). */
+struct mem_region *
+build_mem_region(unsigned char *buf, size_t len)
+{
+ struct mem_blk *mb;
+ struct mem_region *mr;
+ size_t offset = 0;
+ size_t i;
+ size_t n;
+
+ if (!buf || !len)
+ return NULL;
+
+ mr = xmalloc(sizeof(*mr));
+ memset(mr, 0, sizeof(*mr));
+ mr->rsize = len;
+ mr->nblocks = num_blocks(len);
+ mr->rem = len % BLKSIZE;
+ mr->blksize = BLKSIZE;
+ mr->mblks = xmalloc(sizeof(struct mem_blk) * mr->nblocks);
+
+ if (verbose > 0)
+ fprintf(stderr, "%s: blksize: %d, rsize: %zu, nblocks: %zu, rem: %zu\n",
+ __func__, BLKSIZE, mr->rsize, mr->nblocks, mr->rem);
+
+ for (i = 0; i < mr->nblocks; i++) {
+ n = min(len, BLKSIZE);
+ mb = &mr->mblks[i];
+ mb->buf = buf;
+ mb->weak_sum = weak_sum(buf, n);
+ strong_sum(buf, n, mb->digest);
+ mb->offset = offset;
+ mb->len = n;
+ if (verbose > 1) {
+ fprintf(stderr, "%s: adding node with weak sum: %08x",
+ __func__, mb->weak_sum);
+ fprintf(stderr, " at offset: %jd of len: %zu\n",
+ (intmax_t)mb->offset, mb->len);
+ }
+ len -= n;
+ buf += n;
+ offset += n;
+ }
+ return mr;
+}
+
+void
+dump_mem_region(struct mem_region *mr)
+{
+ size_t i;
+
+ if (!mr)
+ return;
+
+ for (i = 0; i < mr->nblocks; i++)
+ dump_mem_blk(&mr->mblks[i]);
+}
+
+void
+free_mem_region(struct mem_region *mr)
+{
+ if (!mr)
+ return;
+
+ free(mr->mblks);
+ mr->mblks = NULL;
+ free(mr);
+}
+
+RB_GENERATE(mem_tree, mem_tree_entry, entry,
+ mem_cmp);
+int
+mem_cmp(struct mem_tree_entry *a, struct mem_tree_entry *b)
+{
+ if (a->weak_sum < b->weak_sum)
+ return -1;
+ if (a->weak_sum > b->weak_sum)
+ return 1;
+ return 0;
+}
+
+/* Given a memory region, build an rbtree
+ * of the checksums. We use this rbtree later on
+ * when we want to find the differences between
+ * two memory regions */
+struct mem_tree *
+build_mem_tree(struct mem_region *mr)
+{
+ struct mem_blk *mb;
+ struct mem_tree_entry *me, *n;
+ struct mem_tree *mt;
+ size_t i;
+
+ if (!mr)
+ return NULL;
+
+ mt = xmalloc(sizeof(*mt));
+ RB_INIT(mt);
+
+ for (i = 0; i < mr->nblocks; i++) {
+ mb = &mr->mblks[i];
+ me = xmalloc(sizeof(*me));
+ me->weak_sum = mb->weak_sum;
+ me->mr = mr;
+ n = RB_INSERT(mem_tree, mt, me);
+ if (!n) {
+ me->mblks = xmalloc(sizeof(*me->mblks));
+ me->mblks[0] = mb;
+ me->nmblks = 1;
+ continue;
+ }
+ /* If we have two blocks with the same weak
+ * sum then try to chain the MD5 hash so we can keep track
+ * of it */
+ n->mblks = xrealloc(n->mblks,
+ (n->nmblks + 1) * sizeof(*me->mblks));
+ n->mblks[n->nmblks] = mb;
+ n->nmblks++;
+ }
+ return mt;
+}
+
+void
+dump_mem_tree(struct mem_tree *mt)
+{
+
+ struct mem_tree_entry *me;
+ struct mem_blk *mb;
+ size_t i;
+
+ if (!mt)
+ return;
+
+ RB_FOREACH(me, mem_tree, mt) {
+ for (i = 0; i < me->nmblks; i++) {
+ mb = me->mblks[i];
+ dump_mem_blk(mb);
+ }
+ }
+}
+
+void
+free_mem_tree(struct mem_tree *mt)
+{
+
+ struct mem_tree_entry *me, *next;
+
+ if (!mt)
+ return;
+
+ next = RB_MIN(mem_tree, mt);
+ while (next) {
+ me = next;
+ next = RB_NEXT(mem_tree, mt, me);
+ RB_REMOVE(mem_tree, mt, me);
+ free(me->mblks);
+ me->mblks = NULL;
+ free(me);
+ }
+ free(mt);
+}
+
+/* Diff the two memory regions and return a
+ * a diff structure. In fact `dst' is an rbtree
+ * that describes the *old* memory region
+ * and `src' is the *new* and updated version of
+ * the memory region. */
+struct mem_region_diff *
+diff_mem_region(struct mem_tree *dst,
+ struct mem_region *src)
+{
+ struct mem_blk *mb;
+ struct mem_diff *mdiff;
+ struct mem_region_diff *rdiff;
+ struct mem_region *mr_old;
+ struct mem_tree_entry find, *me;
+ size_t i, j;
+ bool found;
+ size_t size;
+
+ if (!dst || !src)
+ return NULL;
+
+ rdiff = xmalloc(sizeof(*rdiff));
+ rdiff->mrdiffs = NULL;
+ rdiff->nmrdiffs = 0;
+ me = RB_MIN(mem_tree, dst);
+ mr_old = me->mr;
+
+ /* We can only diff regions of the same size */
+ if (mr_old->rsize != src->rsize)
+ return NULL;
+
+ for (i = 0; i < src->nblocks; i++) {
+ found = false;
+ mb = &src->mblks[i];
+ find.weak_sum = mb->weak_sum;
+ me = RB_FIND(mem_tree, dst, &find);
+ if (me) {
+ /* We might have a weak sum collision
+ * so check the strong sum as well */
+ for (j = 0; j < me->nmblks; j++) {
+ if (!memcmp(me->mblks[j]->digest,
+ mb->digest,
+ MD5_DIGEST_LENGTH)) {
+ found = true;
+ break;
+ }
+ }
+ }
+ if (!found) {
+ /* Cool, this is a modified block - update the rdiff */
+ size = (rdiff->nmrdiffs + 1) * sizeof(*rdiff->mrdiffs);
+ rdiff->mrdiffs = xrealloc(rdiff->mrdiffs, size);
+ mdiff = &rdiff->mrdiffs[rdiff->nmrdiffs];
+ mdiff->buf = xmalloc(mb->len);
+ memcpy(mdiff->buf, mb->buf, mb->len);
+ mdiff->offset = mb->offset;
+ mdiff->len = mb->len;
+ mdiff->index = i;
+ rdiff->nmrdiffs++;
+ }
+ }
+
+ return rdiff;
+}
+
+/* Apply the diff on `dst'. We return the same
+ * memory region as was passed in. */
+struct mem_region *
+apply_diff(struct mem_region *dst,
+ struct mem_region_diff *rdiff)
+{
+ size_t i;
+ struct mem_diff *mdiff;
+ struct mem_blk *mb;
+
+ if (!dst || !rdiff)
+ return NULL;
+
+ for (i = 0; i < rdiff->nmrdiffs; i++) {
+ mdiff = &rdiff->mrdiffs[i];
+ mb = &dst->mblks[mdiff->index];
+ if (verbose > 1)
+ fprintf(stderr, "patching block %d\n",
+ mdiff->index);
+ if (mdiff->len != mb->len)
+ errx(1, "wtf?");
+ /* Patch it! */
+ memcpy(mb->buf, mdiff->buf, mb->len);
+ }
+
+ return dst;
+}
+
+void
+dump_mem_region_diff(struct mem_region_diff *rdiff)
+{
+ struct mem_diff *mdiff;
+ char *p;
+ size_t i, j;
+
+ if (!rdiff)
+ return;
+
+ for (i = 0; i < rdiff->nmrdiffs; i++) {
+ mdiff = &rdiff->mrdiffs[i];
+ printf("buf: %p: ", mdiff->buf);
+ p = mdiff->buf;
+ for (j = 0; j < 64 && j < mdiff->len; j++)
+ putchar(p[j]);
+ putchar('\n');
+ printf("offset: %jd\n", (intmax_t)mdiff->offset);
+ printf("len: %zu\n", mdiff->len);
+ }
+}
+
+void
+free_mem_region_diff(struct mem_region_diff *rdiff)
+{
+ struct mem_diff *mdiff;
+ size_t i;
+
+ if (!rdiff)
+ return;
+
+ for (i = 0; i < rdiff->nmrdiffs; i++) {
+ mdiff = &rdiff->mrdiffs[i];
+ free(mdiff->buf);
+ mdiff->buf = NULL;
+ }
+ free(rdiff->mrdiffs);
+ rdiff->mrdiffs = NULL;
+ free(rdiff);
+}
diff --git a/memzap.c b/memzap.c
@@ -0,0 +1,142 @@
+/* See LICENSE file for copyright and license details. */
+
+#include "data.h"
+
+void
+readmem(pid_t pid, void *buf, off_t offset, size_t size)
+{
+ char tbuf[PATH_MAX - 1];
+ int fdmem, r;
+ ssize_t rs;
+ size_t s;
+
+ snprintf(tbuf, sizeof(tbuf), "/proc/%d/mem", pid);
+ fdmem = open(tbuf, O_RDONLY);
+ if (fdmem < 0)
+ err(1, "open");
+
+ r = lseek(fdmem, offset, SEEK_SET);
+ if (r < 0)
+ err(1, "lseek");
+
+ s = 0;
+ while (s < size) {
+ rs = read(fdmem, buf + s, size - s);
+ if (rs < 0)
+ err(1, "read");
+ s += rs;
+ }
+
+ close(fdmem);
+}
+
+int
+main(int argc, char *argv[])
+{
+ struct mem_region *mr_old, *mr_new;
+ struct mem_tree *mt_old;
+ struct mem_region_diff *rdiff;
+ int ret, stat;
+ pid_t pid;
+ unsigned char *buf, *buf_new, *pold, *pnew;
+ char *addr;
+ size_t len;
+
+ if (argc != 4) {
+ fprintf(stderr, "usage: %s <program> <address> <len>\n", *argv);
+ return 1;
+ }
+
+ setbuf(stdout, NULL);
+
+ addr = (char *)strtoul(argv[2], NULL, 16);
+ len = strtoul(argv[3], NULL, 10);
+
+ printf("[+] Base address: %p, length: %zu\n",
+ addr, len);
+
+ pid = fork();
+ if (pid < 0)
+ err(1, "fork");
+ switch (pid) {
+ case 0:
+ ret = ptrace(PTRACE_TRACEME, 0, NULL, NULL);
+ if (ret < 0)
+ err(1, "ptrace");
+ execl(argv[1], argv[1], (char *)NULL);
+ _Exit(1);
+ default:
+ waitpid(pid, &stat, WSTOPPED);
+ break;
+ }
+
+ printf("[+] Mapping buffers into memory\n");
+
+ buf = mmap(0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ -1, 0);
+ if (buf == MAP_FAILED) {
+ err(1, "mmap");
+ }
+
+ buf_new = mmap(0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ -1, 0);
+ if (buf_new == MAP_FAILED) {
+ err(1, "mmap");
+ }
+
+ printf("[+] Single stepping child with pid %jd\n",
+ (intmax_t)pid);
+
+ ret = ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);
+ if (ret < 0)
+ err(1, "ptrace");
+ waitpid(pid, &stat, WSTOPPED);
+
+ if (!WIFSTOPPED(stat))
+ goto out_mmap;
+
+ pold = buf;
+ pnew = buf_new;
+ do {
+ readmem(pid, pold, (off_t)addr, len);
+
+ mr_old = build_mem_region(pold, len);
+ if (!mr_old)
+ errx(1, "[-] Failed to build memory region\n");
+ mt_old = build_mem_tree(mr_old);
+ if (!mt_old)
+ errx(1, "[-] Failed to build memory tree\n");
+
+ ret = ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);
+ if (ret < 0)
+ err(1, "ptrace");
+ waitpid(pid, &stat, WSTOPPED);
+
+ if (!WIFSTOPPED(stat)) {
+ free_mem_region(mr_old);
+ free_mem_tree(mt_old);
+ goto out_mmap;
+ }
+
+ readmem(pid, pnew, (off_t)addr, len);
+
+ mr_new = build_mem_region(pnew, len);
+ if (!mr_new)
+ errx(1, "[-] Failed to build memory region\n");
+ rdiff = diff_mem_region(mt_old, mr_new);
+ if (rdiff->nmrdiffs) {
+ apply_diff(mr_old, rdiff);
+ dump_mem_region_diff(rdiff);
+ }
+
+ free_mem_region(mr_old);
+ free_mem_tree(mt_old);
+ free_mem_region(mr_new);
+ free_mem_region_diff(rdiff);
+ } while(1);
+
+out_mmap:
+ munmap(buf, len);
+ munmap(buf_new, len);
+ return 0;
+}
diff --git a/queue.h b/queue.h
@@ -0,0 +1,574 @@
+/*
+ * Copyright (c) 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)queue.h 8.5 (Berkeley) 8/20/94
+ */
+
+#ifndef _SYS_QUEUE_H
+#define _SYS_QUEUE_H
+
+/*
+ * This file defines five types of data structures: singly-linked lists,
+ * lists, simple queues, tail queues, and circular queues.
+ *
+ * A singly-linked list is headed by a single forward pointer. The
+ * elements are singly linked for minimum space and pointer manipulation
+ * overhead at the expense of O(n) removal for arbitrary elements. New
+ * elements can be added to the list after an existing element or at the
+ * head of the list. Elements being removed from the head of the list
+ * should use the explicit macro for this purpose for optimum
+ * efficiency. A singly-linked list may only be traversed in the forward
+ * direction. Singly-linked lists are ideal for applications with large
+ * datasets and few or no removals or for implementing a LIFO queue.
+ *
+ * A list is headed by a single forward pointer (or an array of forward
+ * pointers for a hash table header). The elements are doubly linked
+ * so that an arbitrary element can be removed without a need to
+ * traverse the list. New elements can be added to the list before
+ * or after an existing element or at the head of the list. A list
+ * may only be traversed in the forward direction.
+ *
+ * A simple queue is headed by a pair of pointers, one the head of the
+ * list and the other to the tail of the list. The elements are singly
+ * linked to save space, so elements can only be removed from the
+ * head of the list. New elements can be added to the list after
+ * an existing element, at the head of the list, or at the end of the
+ * list. A simple queue may only be traversed in the forward direction.
+ *
+ * A tail queue is headed by a pair of pointers, one to the head of the
+ * list and the other to the tail of the list. The elements are doubly
+ * linked so that an arbitrary element can be removed without a need to
+ * traverse the list. New elements can be added to the list before or
+ * after an existing element, at the head of the list, or at the end of
+ * the list. A tail queue may be traversed in either direction.
+ *
+ * A circle queue is headed by a pair of pointers, one to the head of the
+ * list and the other to the tail of the list. The elements are doubly
+ * linked so that an arbitrary element can be removed without a need to
+ * traverse the list. New elements can be added to the list before or after
+ * an existing element, at the head of the list, or at the end of the list.
+ * A circle queue may be traversed in either direction, but has a more
+ * complex end of list detection.
+ *
+ * For details on the use of these macros, see the queue(3) manual page.
+ */
+
+/*
+ * List definitions.
+ */
+#define LIST_HEAD(name, type) \
+struct name { \
+ struct type *lh_first; /* first element */ \
+}
+
+#define LIST_HEAD_INITIALIZER(head) \
+ { NULL }
+
+#define LIST_ENTRY(type) \
+struct { \
+ struct type *le_next; /* next element */ \
+ struct type **le_prev; /* address of previous next element */ \
+}
+
+/*
+ * List functions.
+ */
+#define LIST_INIT(head) do { \
+ (head)->lh_first = NULL; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_INSERT_AFTER(listelm, elm, field) do { \
+ if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
+ (listelm)->field.le_next->field.le_prev = \
+ &(elm)->field.le_next; \
+ (listelm)->field.le_next = (elm); \
+ (elm)->field.le_prev = &(listelm)->field.le_next; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
+ (elm)->field.le_prev = (listelm)->field.le_prev; \
+ (elm)->field.le_next = (listelm); \
+ *(listelm)->field.le_prev = (elm); \
+ (listelm)->field.le_prev = &(elm)->field.le_next; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.le_next = (head)->lh_first) != NULL) \
+ (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
+ (head)->lh_first = (elm); \
+ (elm)->field.le_prev = &(head)->lh_first; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_REMOVE(elm, field) do { \
+ if ((elm)->field.le_next != NULL) \
+ (elm)->field.le_next->field.le_prev = \
+ (elm)->field.le_prev; \
+ *(elm)->field.le_prev = (elm)->field.le_next; \
+} while (/*CONSTCOND*/0)
+
+#define LIST_FOREACH(var, head, field) \
+ for ((var) = ((head)->lh_first); \
+ (var); \
+ (var) = ((var)->field.le_next))
+
+/*
+ * List access methods.
+ */
+#define LIST_EMPTY(head) ((head)->lh_first == NULL)
+#define LIST_FIRST(head) ((head)->lh_first)
+#define LIST_NEXT(elm, field) ((elm)->field.le_next)
+
+
+/*
+ * Singly-linked List definitions.
+ */
+#define SLIST_HEAD(name, type) \
+struct name { \
+ struct type *slh_first; /* first element */ \
+}
+
+#define SLIST_HEAD_INITIALIZER(head) \
+ { NULL }
+
+#define SLIST_ENTRY(type) \
+struct { \
+ struct type *sle_next; /* next element */ \
+}
+
+/*
+ * Singly-linked List functions.
+ */
+#define SLIST_INIT(head) do { \
+ (head)->slh_first = NULL; \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
+ (elm)->field.sle_next = (slistelm)->field.sle_next; \
+ (slistelm)->field.sle_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_INSERT_HEAD(head, elm, field) do { \
+ (elm)->field.sle_next = (head)->slh_first; \
+ (head)->slh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_REMOVE_HEAD(head, field) do { \
+ (head)->slh_first = (head)->slh_first->field.sle_next; \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_REMOVE(head, elm, type, field) do { \
+ if ((head)->slh_first == (elm)) { \
+ SLIST_REMOVE_HEAD((head), field); \
+ } \
+ else { \
+ struct type *curelm = (head)->slh_first; \
+ while(curelm->field.sle_next != (elm)) \
+ curelm = curelm->field.sle_next; \
+ curelm->field.sle_next = \
+ curelm->field.sle_next->field.sle_next; \
+ } \
+} while (/*CONSTCOND*/0)
+
+#define SLIST_FOREACH(var, head, field) \
+ for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
+
+/*
+ * Singly-linked List access methods.
+ */
+#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
+#define SLIST_FIRST(head) ((head)->slh_first)
+#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
+
+
+/*
+ * Singly-linked Tail queue declarations.
+ */
+#define STAILQ_HEAD(name, type) \
+struct name { \
+ struct type *stqh_first; /* first element */ \
+ struct type **stqh_last; /* addr of last next element */ \
+}
+
+#define STAILQ_HEAD_INITIALIZER(head) \
+ { NULL, &(head).stqh_first }
+
+#define STAILQ_ENTRY(type) \
+struct { \
+ struct type *stqe_next; /* next element */ \
+}
+
+/*
+ * Singly-linked Tail queue functions.
+ */
+#define STAILQ_INIT(head) do { \
+ (head)->stqh_first = NULL; \
+ (head)->stqh_last = &(head)->stqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
+ (head)->stqh_last = &(elm)->field.stqe_next; \
+ (head)->stqh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.stqe_next = NULL; \
+ *(head)->stqh_last = (elm); \
+ (head)->stqh_last = &(elm)->field.stqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
+ (head)->stqh_last = &(elm)->field.stqe_next; \
+ (listelm)->field.stqe_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_REMOVE_HEAD(head, field) do { \
+ if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
+ (head)->stqh_last = &(head)->stqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_REMOVE(head, elm, type, field) do { \
+ if ((head)->stqh_first == (elm)) { \
+ STAILQ_REMOVE_HEAD((head), field); \
+ } else { \
+ struct type *curelm = (head)->stqh_first; \
+ while (curelm->field.stqe_next != (elm)) \
+ curelm = curelm->field.stqe_next; \
+ if ((curelm->field.stqe_next = \
+ curelm->field.stqe_next->field.stqe_next) == NULL) \
+ (head)->stqh_last = &(curelm)->field.stqe_next; \
+ } \
+} while (/*CONSTCOND*/0)
+
+#define STAILQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->stqh_first); \
+ (var); \
+ (var) = ((var)->field.stqe_next))
+
+#define STAILQ_CONCAT(head1, head2) do { \
+ if (!STAILQ_EMPTY((head2))) { \
+ *(head1)->stqh_last = (head2)->stqh_first; \
+ (head1)->stqh_last = (head2)->stqh_last; \
+ STAILQ_INIT((head2)); \
+ } \
+} while (/*CONSTCOND*/0)
+
+/*
+ * Singly-linked Tail queue access methods.
+ */
+#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
+#define STAILQ_FIRST(head) ((head)->stqh_first)
+#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
+
+
+/*
+ * Simple queue definitions.
+ */
+#define SIMPLEQ_HEAD(name, type) \
+struct name { \
+ struct type *sqh_first; /* first element */ \
+ struct type **sqh_last; /* addr of last next element */ \
+}
+
+#define SIMPLEQ_HEAD_INITIALIZER(head) \
+ { NULL, &(head).sqh_first }
+
+#define SIMPLEQ_ENTRY(type) \
+struct { \
+ struct type *sqe_next; /* next element */ \
+}
+
+/*
+ * Simple queue functions.
+ */
+#define SIMPLEQ_INIT(head) do { \
+ (head)->sqh_first = NULL; \
+ (head)->sqh_last = &(head)->sqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
+ (head)->sqh_last = &(elm)->field.sqe_next; \
+ (head)->sqh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.sqe_next = NULL; \
+ *(head)->sqh_last = (elm); \
+ (head)->sqh_last = &(elm)->field.sqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
+ (head)->sqh_last = &(elm)->field.sqe_next; \
+ (listelm)->field.sqe_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
+ if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
+ (head)->sqh_last = &(head)->sqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_REMOVE(head, elm, type, field) do { \
+ if ((head)->sqh_first == (elm)) { \
+ SIMPLEQ_REMOVE_HEAD((head), field); \
+ } else { \
+ struct type *curelm = (head)->sqh_first; \
+ while (curelm->field.sqe_next != (elm)) \
+ curelm = curelm->field.sqe_next; \
+ if ((curelm->field.sqe_next = \
+ curelm->field.sqe_next->field.sqe_next) == NULL) \
+ (head)->sqh_last = &(curelm)->field.sqe_next; \
+ } \
+} while (/*CONSTCOND*/0)
+
+#define SIMPLEQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->sqh_first); \
+ (var); \
+ (var) = ((var)->field.sqe_next))
+
+/*
+ * Simple queue access methods.
+ */
+#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
+#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
+#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
+
+
+/*
+ * Tail queue definitions.
+ */
+#define _TAILQ_HEAD(name, type, qual) \
+struct name { \
+ qual type *tqh_first; /* first element */ \
+ qual type *qual *tqh_last; /* addr of last next element */ \
+}
+#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
+
+#define TAILQ_HEAD_INITIALIZER(head) \
+ { NULL, &(head).tqh_first }
+
+#define _TAILQ_ENTRY(type, qual) \
+struct { \
+ qual type *tqe_next; /* next element */ \
+ qual type *qual *tqe_prev; /* address of previous next element */\
+}
+#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
+
+/*
+ * Tail queue functions.
+ */
+#define TAILQ_INIT(head) do { \
+ (head)->tqh_first = NULL; \
+ (head)->tqh_last = &(head)->tqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_HEAD(head, elm, field) do { \
+ if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
+ (head)->tqh_first->field.tqe_prev = \
+ &(elm)->field.tqe_next; \
+ else \
+ (head)->tqh_last = &(elm)->field.tqe_next; \
+ (head)->tqh_first = (elm); \
+ (elm)->field.tqe_prev = &(head)->tqh_first; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.tqe_next = NULL; \
+ (elm)->field.tqe_prev = (head)->tqh_last; \
+ *(head)->tqh_last = (elm); \
+ (head)->tqh_last = &(elm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
+ (elm)->field.tqe_next->field.tqe_prev = \
+ &(elm)->field.tqe_next; \
+ else \
+ (head)->tqh_last = &(elm)->field.tqe_next; \
+ (listelm)->field.tqe_next = (elm); \
+ (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
+ (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
+ (elm)->field.tqe_next = (listelm); \
+ *(listelm)->field.tqe_prev = (elm); \
+ (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_REMOVE(head, elm, field) do { \
+ if (((elm)->field.tqe_next) != NULL) \
+ (elm)->field.tqe_next->field.tqe_prev = \
+ (elm)->field.tqe_prev; \
+ else \
+ (head)->tqh_last = (elm)->field.tqe_prev; \
+ *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define TAILQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->tqh_first); \
+ (var); \
+ (var) = ((var)->field.tqe_next))
+
+#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
+ for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
+ (var); \
+ (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
+
+#define TAILQ_CONCAT(head1, head2, field) do { \
+ if (!TAILQ_EMPTY(head2)) { \
+ *(head1)->tqh_last = (head2)->tqh_first; \
+ (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
+ (head1)->tqh_last = (head2)->tqh_last; \
+ TAILQ_INIT((head2)); \
+ } \
+} while (/*CONSTCOND*/0)
+
+/*
+ * Tail queue access methods.
+ */
+#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
+#define TAILQ_FIRST(head) ((head)->tqh_first)
+#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
+
+#define TAILQ_LAST(head, headname) \
+ (*(((struct headname *)((head)->tqh_last))->tqh_last))
+#define TAILQ_PREV(elm, headname, field) \
+ (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
+
+
+/*
+ * Circular queue definitions.
+ */
+#define CIRCLEQ_HEAD(name, type) \
+struct name { \
+ struct type *cqh_first; /* first element */ \
+ struct type *cqh_last; /* last element */ \
+}
+
+#define CIRCLEQ_HEAD_INITIALIZER(head) \
+ { (void *)&head, (void *)&head }
+
+#define CIRCLEQ_ENTRY(type) \
+struct { \
+ struct type *cqe_next; /* next element */ \
+ struct type *cqe_prev; /* previous element */ \
+}
+
+/*
+ * Circular queue functions.
+ */
+#define CIRCLEQ_INIT(head) do { \
+ (head)->cqh_first = (void *)(head); \
+ (head)->cqh_last = (void *)(head); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
+ (elm)->field.cqe_next = (listelm)->field.cqe_next; \
+ (elm)->field.cqe_prev = (listelm); \
+ if ((listelm)->field.cqe_next == (void *)(head)) \
+ (head)->cqh_last = (elm); \
+ else \
+ (listelm)->field.cqe_next->field.cqe_prev = (elm); \
+ (listelm)->field.cqe_next = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
+ (elm)->field.cqe_next = (listelm); \
+ (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
+ if ((listelm)->field.cqe_prev == (void *)(head)) \
+ (head)->cqh_first = (elm); \
+ else \
+ (listelm)->field.cqe_prev->field.cqe_next = (elm); \
+ (listelm)->field.cqe_prev = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
+ (elm)->field.cqe_next = (head)->cqh_first; \
+ (elm)->field.cqe_prev = (void *)(head); \
+ if ((head)->cqh_last == (void *)(head)) \
+ (head)->cqh_last = (elm); \
+ else \
+ (head)->cqh_first->field.cqe_prev = (elm); \
+ (head)->cqh_first = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
+ (elm)->field.cqe_next = (void *)(head); \
+ (elm)->field.cqe_prev = (head)->cqh_last; \
+ if ((head)->cqh_first == (void *)(head)) \
+ (head)->cqh_first = (elm); \
+ else \
+ (head)->cqh_last->field.cqe_next = (elm); \
+ (head)->cqh_last = (elm); \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_REMOVE(head, elm, field) do { \
+ if ((elm)->field.cqe_next == (void *)(head)) \
+ (head)->cqh_last = (elm)->field.cqe_prev; \
+ else \
+ (elm)->field.cqe_next->field.cqe_prev = \
+ (elm)->field.cqe_prev; \
+ if ((elm)->field.cqe_prev == (void *)(head)) \
+ (head)->cqh_first = (elm)->field.cqe_next; \
+ else \
+ (elm)->field.cqe_prev->field.cqe_next = \
+ (elm)->field.cqe_next; \
+} while (/*CONSTCOND*/0)
+
+#define CIRCLEQ_FOREACH(var, head, field) \
+ for ((var) = ((head)->cqh_first); \
+ (var) != (const void *)(head); \
+ (var) = ((var)->field.cqe_next))
+
+#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
+ for ((var) = ((head)->cqh_last); \
+ (var) != (const void *)(head); \
+ (var) = ((var)->field.cqe_prev))
+
+/*
+ * Circular queue access methods.
+ */
+#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
+#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
+#define CIRCLEQ_LAST(head) ((head)->cqh_last)
+#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
+#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
+
+#define CIRCLEQ_LOOP_NEXT(head, elm, field) \
+ (((elm)->field.cqe_next == (void *)(head)) \
+ ? ((head)->cqh_first) \
+ : (elm->field.cqe_next))
+#define CIRCLEQ_LOOP_PREV(head, elm, field) \
+ (((elm)->field.cqe_prev == (void *)(head)) \
+ ? ((head)->cqh_last) \
+ : (elm->field.cqe_prev))
+
+#endif
diff --git a/test.c b/test.c
@@ -0,0 +1,16 @@
+#include <stdio.h>
+#include <string.h>
+
+char buf[128] __attribute__ ((section ("TRACED_AREA"))) = { 0 };
+
+int
+main(void)
+{
+ size_t i;
+ char *p = buf;
+
+ fprintf(stderr, "buf is at %p\n", buf);
+ for (i = 0; i < sizeof(buf); i++)
+ p[i] = 0x41 + i;
+ return 0;
+}
diff --git a/tree.h b/tree.h
@@ -0,0 +1,765 @@
+/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
+/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
+/* $FreeBSD$ */
+
+/*-
+ * Copyright 2002 Niels Provos <provos@citi.umich.edu>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _SYS_TREE_H
+#define _SYS_TREE_H
+
+#include <sys/cdefs.h>
+
+/*
+ * This file defines data structures for different types of trees:
+ * splay trees and red-black trees.
+ *
+ * A splay tree is a self-organizing data structure. Every operation
+ * on the tree causes a splay to happen. The splay moves the requested
+ * node to the root of the tree and partly rebalances it.
+ *
+ * This has the benefit that request locality causes faster lookups as
+ * the requested nodes move to the top of the tree. On the other hand,
+ * every lookup causes memory writes.
+ *
+ * The Balance Theorem bounds the total access time for m operations
+ * and n inserts on an initially empty tree as O((m + n)lg n). The
+ * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
+ *
+ * A red-black tree is a binary search tree with the node color as an
+ * extra attribute. It fulfills a set of conditions:
+ * - every search path from the root to a leaf consists of the
+ * same number of black nodes,
+ * - each red node (except for the root) has a black parent,
+ * - each leaf node is black.
+ *
+ * Every operation on a red-black tree is bounded as O(lg n).
+ * The maximum height of a red-black tree is 2lg (n+1).
+ */
+
+#define SPLAY_HEAD(name, type) \
+struct name { \
+ struct type *sph_root; /* root of the tree */ \
+}
+
+#define SPLAY_INITIALIZER(root) \
+ { NULL }
+
+#define SPLAY_INIT(root) do { \
+ (root)->sph_root = NULL; \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_ENTRY(type) \
+struct { \
+ struct type *spe_left; /* left element */ \
+ struct type *spe_right; /* right element */ \
+}
+
+#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
+#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
+#define SPLAY_ROOT(head) (head)->sph_root
+#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
+
+/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
+#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
+ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
+ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
+ (head)->sph_root = tmp; \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
+ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
+ SPLAY_LEFT(tmp, field) = (head)->sph_root; \
+ (head)->sph_root = tmp; \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_LINKLEFT(head, tmp, field) do { \
+ SPLAY_LEFT(tmp, field) = (head)->sph_root; \
+ tmp = (head)->sph_root; \
+ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_LINKRIGHT(head, tmp, field) do { \
+ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
+ tmp = (head)->sph_root; \
+ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
+} while (/*CONSTCOND*/ 0)
+
+#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
+ SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
+ SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
+ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
+ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
+} while (/*CONSTCOND*/ 0)
+
+/* Generates prototypes and inline functions */
+
+#define SPLAY_PROTOTYPE(name, type, field, cmp) \
+void name##_SPLAY(struct name *, struct type *); \
+void name##_SPLAY_MINMAX(struct name *, int); \
+struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
+struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
+ \
+/* Finds the node with the same key as elm */ \
+static __inline struct type * \
+name##_SPLAY_FIND(struct name *head, struct type *elm) \
+{ \
+ if (SPLAY_EMPTY(head)) \
+ return(NULL); \
+ name##_SPLAY(head, elm); \
+ if ((cmp)(elm, (head)->sph_root) == 0) \
+ return (head->sph_root); \
+ return (NULL); \
+} \
+ \
+static __inline struct type * \
+name##_SPLAY_NEXT(struct name *head, struct type *elm) \
+{ \
+ name##_SPLAY(head, elm); \
+ if (SPLAY_RIGHT(elm, field) != NULL) { \
+ elm = SPLAY_RIGHT(elm, field); \
+ while (SPLAY_LEFT(elm, field) != NULL) { \
+ elm = SPLAY_LEFT(elm, field); \
+ } \
+ } else \
+ elm = NULL; \
+ return (elm); \
+} \
+ \
+static __inline struct type * \
+name##_SPLAY_MIN_MAX(struct name *head, int val) \
+{ \
+ name##_SPLAY_MINMAX(head, val); \
+ return (SPLAY_ROOT(head)); \
+}
+
+/* Main splay operation.
+ * Moves node close to the key of elm to top
+ */
+#define SPLAY_GENERATE(name, type, field, cmp) \
+struct type * \
+name##_SPLAY_INSERT(struct name *head, struct type *elm) \
+{ \
+ if (SPLAY_EMPTY(head)) { \
+ SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
+ } else { \
+ int __comp; \
+ name##_SPLAY(head, elm); \
+ __comp = (cmp)(elm, (head)->sph_root); \
+ if(__comp < 0) { \
+ SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
+ SPLAY_RIGHT(elm, field) = (head)->sph_root; \
+ SPLAY_LEFT((head)->sph_root, field) = NULL; \
+ } else if (__comp > 0) { \
+ SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
+ SPLAY_LEFT(elm, field) = (head)->sph_root; \
+ SPLAY_RIGHT((head)->sph_root, field) = NULL; \
+ } else \
+ return ((head)->sph_root); \
+ } \
+ (head)->sph_root = (elm); \
+ return (NULL); \
+} \
+ \
+struct type * \
+name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
+{ \
+ struct type *__tmp; \
+ if (SPLAY_EMPTY(head)) \
+ return (NULL); \
+ name##_SPLAY(head, elm); \
+ if ((cmp)(elm, (head)->sph_root) == 0) { \
+ if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
+ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
+ } else { \
+ __tmp = SPLAY_RIGHT((head)->sph_root, field); \
+ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
+ name##_SPLAY(head, elm); \
+ SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
+ } \
+ return (elm); \
+ } \
+ return (NULL); \
+} \
+ \
+void \
+name##_SPLAY(struct name *head, struct type *elm) \
+{ \
+ struct type __node, *__left, *__right, *__tmp; \
+ int __comp; \
+\
+ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
+ __left = __right = &__node; \
+\
+ while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
+ if (__comp < 0) { \
+ __tmp = SPLAY_LEFT((head)->sph_root, field); \
+ if (__tmp == NULL) \
+ break; \
+ if ((cmp)(elm, __tmp) < 0){ \
+ SPLAY_ROTATE_RIGHT(head, __tmp, field); \
+ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
+ break; \
+ } \
+ SPLAY_LINKLEFT(head, __right, field); \
+ } else if (__comp > 0) { \
+ __tmp = SPLAY_RIGHT((head)->sph_root, field); \
+ if (__tmp == NULL) \
+ break; \
+ if ((cmp)(elm, __tmp) > 0){ \
+ SPLAY_ROTATE_LEFT(head, __tmp, field); \
+ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
+ break; \
+ } \
+ SPLAY_LINKRIGHT(head, __left, field); \
+ } \
+ } \
+ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
+} \
+ \
+/* Splay with either the minimum or the maximum element \
+ * Used to find minimum or maximum element in tree. \
+ */ \
+void name##_SPLAY_MINMAX(struct name *head, int __comp) \
+{ \
+ struct type __node, *__left, *__right, *__tmp; \
+\
+ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
+ __left = __right = &__node; \
+\
+ while (1) { \
+ if (__comp < 0) { \
+ __tmp = SPLAY_LEFT((head)->sph_root, field); \
+ if (__tmp == NULL) \
+ break; \
+ if (__comp < 0){ \
+ SPLAY_ROTATE_RIGHT(head, __tmp, field); \
+ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
+ break; \
+ } \
+ SPLAY_LINKLEFT(head, __right, field); \
+ } else if (__comp > 0) { \
+ __tmp = SPLAY_RIGHT((head)->sph_root, field); \
+ if (__tmp == NULL) \
+ break; \
+ if (__comp > 0) { \
+ SPLAY_ROTATE_LEFT(head, __tmp, field); \
+ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
+ break; \
+ } \
+ SPLAY_LINKRIGHT(head, __left, field); \
+ } \
+ } \
+ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
+}
+
+#define SPLAY_NEGINF -1
+#define SPLAY_INF 1
+
+#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
+#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
+#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
+#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
+#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
+ : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
+#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
+ : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
+
+#define SPLAY_FOREACH(x, name, head) \
+ for ((x) = SPLAY_MIN(name, head); \
+ (x) != NULL; \
+ (x) = SPLAY_NEXT(name, head, x))
+
+/* Macros that define a red-black tree */
+#define RB_HEAD(name, type) \
+struct name { \
+ struct type *rbh_root; /* root of the tree */ \
+}
+
+#define RB_INITIALIZER(root) \
+ { NULL }
+
+#define RB_INIT(root) do { \
+ (root)->rbh_root = NULL; \
+} while (/*CONSTCOND*/ 0)
+
+#define RB_BLACK 0
+#define RB_RED 1
+#define RB_ENTRY(type) \
+struct { \
+ struct type *rbe_left; /* left element */ \
+ struct type *rbe_right; /* right element */ \
+ struct type *rbe_parent; /* parent element */ \
+ int rbe_color; /* node color */ \
+}
+
+#define RB_LEFT(elm, field) (elm)->field.rbe_left
+#define RB_RIGHT(elm, field) (elm)->field.rbe_right
+#define RB_PARENT(elm, field) (elm)->field.rbe_parent
+#define RB_COLOR(elm, field) (elm)->field.rbe_color
+#define RB_ROOT(head) (head)->rbh_root
+#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
+
+#define RB_SET(elm, parent, field) do { \
+ RB_PARENT(elm, field) = parent; \
+ RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
+ RB_COLOR(elm, field) = RB_RED; \
+} while (/*CONSTCOND*/ 0)
+
+#define RB_SET_BLACKRED(black, red, field) do { \
+ RB_COLOR(black, field) = RB_BLACK; \
+ RB_COLOR(red, field) = RB_RED; \
+} while (/*CONSTCOND*/ 0)
+
+#ifndef RB_AUGMENT
+#define RB_AUGMENT(x) do {} while (0)
+#endif
+
+#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
+ (tmp) = RB_RIGHT(elm, field); \
+ if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
+ RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
+ } \
+ RB_AUGMENT(elm); \
+ if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
+ if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
+ RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
+ else \
+ RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
+ } else \
+ (head)->rbh_root = (tmp); \
+ RB_LEFT(tmp, field) = (elm); \
+ RB_PARENT(elm, field) = (tmp); \
+ RB_AUGMENT(tmp); \
+ if ((RB_PARENT(tmp, field))) \
+ RB_AUGMENT(RB_PARENT(tmp, field)); \
+} while (/*CONSTCOND*/ 0)
+
+#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
+ (tmp) = RB_LEFT(elm, field); \
+ if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
+ RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
+ } \
+ RB_AUGMENT(elm); \
+ if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
+ if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
+ RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
+ else \
+ RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
+ } else \
+ (head)->rbh_root = (tmp); \
+ RB_RIGHT(tmp, field) = (elm); \
+ RB_PARENT(elm, field) = (tmp); \
+ RB_AUGMENT(tmp); \
+ if ((RB_PARENT(tmp, field))) \
+ RB_AUGMENT(RB_PARENT(tmp, field)); \
+} while (/*CONSTCOND*/ 0)
+
+/* Generates prototypes and inline functions */
+#define RB_PROTOTYPE(name, type, field, cmp) \
+ RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
+#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
+ RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
+#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
+attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
+attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
+attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
+attr struct type *name##_RB_INSERT(struct name *, struct type *); \
+attr struct type *name##_RB_FIND(struct name *, struct type *); \
+attr struct type *name##_RB_NFIND(struct name *, struct type *); \
+attr struct type *name##_RB_NEXT(struct type *); \
+attr struct type *name##_RB_PREV(struct type *); \
+attr struct type *name##_RB_MINMAX(struct name *, int); \
+ \
+
+/* Main rb operation.
+ * Moves node close to the key of elm to top
+ */
+#define RB_GENERATE(name, type, field, cmp) \
+ RB_GENERATE_INTERNAL(name, type, field, cmp,)
+#define RB_GENERATE_STATIC(name, type, field, cmp) \
+ RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
+#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
+attr void \
+name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
+{ \
+ struct type *parent, *gparent, *tmp; \
+ while ((parent = RB_PARENT(elm, field)) != NULL && \
+ RB_COLOR(parent, field) == RB_RED) { \
+ gparent = RB_PARENT(parent, field); \
+ if (parent == RB_LEFT(gparent, field)) { \
+ tmp = RB_RIGHT(gparent, field); \
+ if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
+ RB_COLOR(tmp, field) = RB_BLACK; \
+ RB_SET_BLACKRED(parent, gparent, field);\
+ elm = gparent; \
+ continue; \
+ } \
+ if (RB_RIGHT(parent, field) == elm) { \
+ RB_ROTATE_LEFT(head, parent, tmp, field);\
+ tmp = parent; \
+ parent = elm; \
+ elm = tmp; \
+ } \
+ RB_SET_BLACKRED(parent, gparent, field); \
+ RB_ROTATE_RIGHT(head, gparent, tmp, field); \
+ } else { \
+ tmp = RB_LEFT(gparent, field); \
+ if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
+ RB_COLOR(tmp, field) = RB_BLACK; \
+ RB_SET_BLACKRED(parent, gparent, field);\
+ elm = gparent; \
+ continue; \
+ } \
+ if (RB_LEFT(parent, field) == elm) { \
+ RB_ROTATE_RIGHT(head, parent, tmp, field);\
+ tmp = parent; \
+ parent = elm; \
+ elm = tmp; \
+ } \
+ RB_SET_BLACKRED(parent, gparent, field); \
+ RB_ROTATE_LEFT(head, gparent, tmp, field); \
+ } \
+ } \
+ RB_COLOR(head->rbh_root, field) = RB_BLACK; \
+} \
+ \
+attr void \
+name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
+{ \
+ struct type *tmp; \
+ while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
+ elm != RB_ROOT(head)) { \
+ if (RB_LEFT(parent, field) == elm) { \
+ tmp = RB_RIGHT(parent, field); \
+ if (RB_COLOR(tmp, field) == RB_RED) { \
+ RB_SET_BLACKRED(tmp, parent, field); \
+ RB_ROTATE_LEFT(head, parent, tmp, field);\
+ tmp = RB_RIGHT(parent, field); \
+ } \
+ if ((RB_LEFT(tmp, field) == NULL || \
+ RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
+ (RB_RIGHT(tmp, field) == NULL || \
+ RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
+ RB_COLOR(tmp, field) = RB_RED; \
+ elm = parent; \
+ parent = RB_PARENT(elm, field); \
+ } else { \
+ if (RB_RIGHT(tmp, field) == NULL || \
+ RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
+ struct type *oleft; \
+ if ((oleft = RB_LEFT(tmp, field)) \
+ != NULL) \
+ RB_COLOR(oleft, field) = RB_BLACK;\
+ RB_COLOR(tmp, field) = RB_RED; \
+ RB_ROTATE_RIGHT(head, tmp, oleft, field);\
+ tmp = RB_RIGHT(parent, field); \
+ } \
+ RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
+ RB_COLOR(parent, field) = RB_BLACK; \
+ if (RB_RIGHT(tmp, field)) \
+ RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
+ RB_ROTATE_LEFT(head, parent, tmp, field);\
+ elm = RB_ROOT(head); \
+ break; \
+ } \
+ } else { \
+ tmp = RB_LEFT(parent, field); \
+ if (RB_COLOR(tmp, field) == RB_RED) { \
+ RB_SET_BLACKRED(tmp, parent, field); \
+ RB_ROTATE_RIGHT(head, parent, tmp, field);\
+ tmp = RB_LEFT(parent, field); \
+ } \
+ if ((RB_LEFT(tmp, field) == NULL || \
+ RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
+ (RB_RIGHT(tmp, field) == NULL || \
+ RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
+ RB_COLOR(tmp, field) = RB_RED; \
+ elm = parent; \
+ parent = RB_PARENT(elm, field); \
+ } else { \
+ if (RB_LEFT(tmp, field) == NULL || \
+ RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
+ struct type *oright; \
+ if ((oright = RB_RIGHT(tmp, field)) \
+ != NULL) \
+ RB_COLOR(oright, field) = RB_BLACK;\
+ RB_COLOR(tmp, field) = RB_RED; \
+ RB_ROTATE_LEFT(head, tmp, oright, field);\
+ tmp = RB_LEFT(parent, field); \
+ } \
+ RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
+ RB_COLOR(parent, field) = RB_BLACK; \
+ if (RB_LEFT(tmp, field)) \
+ RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
+ RB_ROTATE_RIGHT(head, parent, tmp, field);\
+ elm = RB_ROOT(head); \
+ break; \
+ } \
+ } \
+ } \
+ if (elm) \
+ RB_COLOR(elm, field) = RB_BLACK; \
+} \
+ \
+attr struct type * \
+name##_RB_REMOVE(struct name *head, struct type *elm) \
+{ \
+ struct type *child, *parent, *old = elm; \
+ int color; \
+ if (RB_LEFT(elm, field) == NULL) \
+ child = RB_RIGHT(elm, field); \
+ else if (RB_RIGHT(elm, field) == NULL) \
+ child = RB_LEFT(elm, field); \
+ else { \
+ struct type *left; \
+ elm = RB_RIGHT(elm, field); \
+ while ((left = RB_LEFT(elm, field)) != NULL) \
+ elm = left; \
+ child = RB_RIGHT(elm, field); \
+ parent = RB_PARENT(elm, field); \
+ color = RB_COLOR(elm, field); \
+ if (child) \
+ RB_PARENT(child, field) = parent; \
+ if (parent) { \
+ if (RB_LEFT(parent, field) == elm) \
+ RB_LEFT(parent, field) = child; \
+ else \
+ RB_RIGHT(parent, field) = child; \
+ RB_AUGMENT(parent); \
+ } else \
+ RB_ROOT(head) = child; \
+ if (RB_PARENT(elm, field) == old) \
+ parent = elm; \
+ (elm)->field = (old)->field; \
+ if (RB_PARENT(old, field)) { \
+ if (RB_LEFT(RB_PARENT(old, field), field) == old)\
+ RB_LEFT(RB_PARENT(old, field), field) = elm;\
+ else \
+ RB_RIGHT(RB_PARENT(old, field), field) = elm;\
+ RB_AUGMENT(RB_PARENT(old, field)); \
+ } else \
+ RB_ROOT(head) = elm; \
+ RB_PARENT(RB_LEFT(old, field), field) = elm; \
+ if (RB_RIGHT(old, field)) \
+ RB_PARENT(RB_RIGHT(old, field), field) = elm; \
+ if (parent) { \
+ left = parent; \
+ do { \
+ RB_AUGMENT(left); \
+ } while ((left = RB_PARENT(left, field)) != NULL); \
+ } \
+ goto color; \
+ } \
+ parent = RB_PARENT(elm, field); \
+ color = RB_COLOR(elm, field); \
+ if (child) \
+ RB_PARENT(child, field) = parent; \
+ if (parent) { \
+ if (RB_LEFT(parent, field) == elm) \
+ RB_LEFT(parent, field) = child; \
+ else \
+ RB_RIGHT(parent, field) = child; \
+ RB_AUGMENT(parent); \
+ } else \
+ RB_ROOT(head) = child; \
+color: \
+ if (color == RB_BLACK) \
+ name##_RB_REMOVE_COLOR(head, parent, child); \
+ return (old); \
+} \
+ \
+/* Inserts a node into the RB tree */ \
+attr struct type * \
+name##_RB_INSERT(struct name *head, struct type *elm) \
+{ \
+ struct type *tmp; \
+ struct type *parent = NULL; \
+ int comp = 0; \
+ tmp = RB_ROOT(head); \
+ while (tmp) { \
+ parent = tmp; \
+ comp = (cmp)(elm, parent); \
+ if (comp < 0) \
+ tmp = RB_LEFT(tmp, field); \
+ else if (comp > 0) \
+ tmp = RB_RIGHT(tmp, field); \
+ else \
+ return (tmp); \
+ } \
+ RB_SET(elm, parent, field); \
+ if (parent != NULL) { \
+ if (comp < 0) \
+ RB_LEFT(parent, field) = elm; \
+ else \
+ RB_RIGHT(parent, field) = elm; \
+ RB_AUGMENT(parent); \
+ } else \
+ RB_ROOT(head) = elm; \
+ name##_RB_INSERT_COLOR(head, elm); \
+ return (NULL); \
+} \
+ \
+/* Finds the node with the same key as elm */ \
+attr struct type * \
+name##_RB_FIND(struct name *head, struct type *elm) \
+{ \
+ struct type *tmp = RB_ROOT(head); \
+ int comp; \
+ while (tmp) { \
+ comp = cmp(elm, tmp); \
+ if (comp < 0) \
+ tmp = RB_LEFT(tmp, field); \
+ else if (comp > 0) \
+ tmp = RB_RIGHT(tmp, field); \
+ else \
+ return (tmp); \
+ } \
+ return (NULL); \
+} \
+ \
+/* Finds the first node greater than or equal to the search key */ \
+attr struct type * \
+name##_RB_NFIND(struct name *head, struct type *elm) \
+{ \
+ struct type *tmp = RB_ROOT(head); \
+ struct type *res = NULL; \
+ int comp; \
+ while (tmp) { \
+ comp = cmp(elm, tmp); \
+ if (comp < 0) { \
+ res = tmp; \
+ tmp = RB_LEFT(tmp, field); \
+ } \
+ else if (comp > 0) \
+ tmp = RB_RIGHT(tmp, field); \
+ else \
+ return (tmp); \
+ } \
+ return (res); \
+} \
+ \
+/* ARGSUSED */ \
+attr struct type * \
+name##_RB_NEXT(struct type *elm) \
+{ \
+ if (RB_RIGHT(elm, field)) { \
+ elm = RB_RIGHT(elm, field); \
+ while (RB_LEFT(elm, field)) \
+ elm = RB_LEFT(elm, field); \
+ } else { \
+ if (RB_PARENT(elm, field) && \
+ (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
+ elm = RB_PARENT(elm, field); \
+ else { \
+ while (RB_PARENT(elm, field) && \
+ (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
+ elm = RB_PARENT(elm, field); \
+ elm = RB_PARENT(elm, field); \
+ } \
+ } \
+ return (elm); \
+} \
+ \
+/* ARGSUSED */ \
+attr struct type * \
+name##_RB_PREV(struct type *elm) \
+{ \
+ if (RB_LEFT(elm, field)) { \
+ elm = RB_LEFT(elm, field); \
+ while (RB_RIGHT(elm, field)) \
+ elm = RB_RIGHT(elm, field); \
+ } else { \
+ if (RB_PARENT(elm, field) && \
+ (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
+ elm = RB_PARENT(elm, field); \
+ else { \
+ while (RB_PARENT(elm, field) && \
+ (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
+ elm = RB_PARENT(elm, field); \
+ elm = RB_PARENT(elm, field); \
+ } \
+ } \
+ return (elm); \
+} \
+ \
+attr struct type * \
+name##_RB_MINMAX(struct name *head, int val) \
+{ \
+ struct type *tmp = RB_ROOT(head); \
+ struct type *parent = NULL; \
+ while (tmp) { \
+ parent = tmp; \
+ if (val < 0) \
+ tmp = RB_LEFT(tmp, field); \
+ else \
+ tmp = RB_RIGHT(tmp, field); \
+ } \
+ return (parent); \
+}
+
+#define RB_NEGINF -1
+#define RB_INF 1
+
+#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
+#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
+#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
+#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
+#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
+#define RB_PREV(name, x, y) name##_RB_PREV(y)
+#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
+#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
+
+#define RB_FOREACH(x, name, head) \
+ for ((x) = RB_MIN(name, head); \
+ (x) != NULL; \
+ (x) = name##_RB_NEXT(x))
+
+#define RB_FOREACH_FROM(x, name, y) \
+ for ((x) = (y); \
+ ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
+ (x) = (y))
+
+#define RB_FOREACH_SAFE(x, name, head, y) \
+ for ((x) = RB_MIN(name, head); \
+ ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
+ (x) = (y))
+
+#define RB_FOREACH_REVERSE(x, name, head) \
+ for ((x) = RB_MAX(name, head); \
+ (x) != NULL; \
+ (x) = name##_RB_PREV(x))
+
+#define RB_FOREACH_REVERSE_FROM(x, name, y) \
+ for ((x) = (y); \
+ ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
+ (x) = (y))
+
+#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
+ for ((x) = RB_MAX(name, head); \
+ ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
+ (x) = (y))
+
+#endif
diff --git a/utils.c b/utils.c
@@ -0,0 +1,25 @@
+/* See LICENSE file for copyright and license details. */
+
+#include "data.h"
+
+void *
+xmalloc(size_t size)
+{
+ void *p;
+
+ p = malloc(size);
+ if (!p)
+ err(1, "malloc");
+ return p;
+}
+
+void *
+xrealloc(void *ptr, size_t size)
+{
+ void *p;
+
+ p = realloc(ptr, size);
+ if (!p)
+ err(1, "malloc");
+ return p;
+}